Metrics

Custom user metrics

It is possible to export custom user metrics by adding the metrics_client argument to the predictor constructor. Below there is an example of how to use the metrics client with the PythonPredictor type. The implementation would be similar to other predictor types.

class PythonPredictor:
def __init__(self, config, metrics_client):
self.metrics = metrics_client
def predict(self, payload):
# --- my predict code here ---
result = ...
# increment a counter with name "my_metric" and tags model:v1
self.metrics.increment(metric="my_counter", value=1, tags={"model": "v1"})
# set the value for a gauge with name "my_gauge" and tags model:v1
self.metrics.gauge(metric="my_gauge", value=42, tags={"model": "v1"})
# set the value for an histogram with name "my_histogram" and tags model:v1
self.metrics.histogram(metric="my_histogram", value=100, tags={"model": "v1"})

Note: The metrics client uses the UDP protocol to push metrics, so if it fails during a metrics push, no exception is thrown.